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Question 1 

 

Let f and g be the functions given by ( ) ( )1 sin4f x xπ= +  and ( ) 4 .xg x −=  Let 

R be the shaded region in the first quadrant enclosed by the y-axis and the graphs 
of f and g, and let S be the shaded region in the first quadrant enclosed by the 
graphs of f and g, as shown in the figure above. 
(a) Find the area of R. 
(b) Find the area of S. 
(c) Find the volume of the solid generated when S is revolved about the horizontal 

line 1.y = −  

 

 ( ) ( )f x g x=  when ( )1 sin 44
xxπ −+ = .  

f and g intersect when 0.178218x =  and when 1.x =  
Let 0.178218.a =  

 
 
 
 
 

 

 

(a) ( ) ( )( )
0

0.064
a

g x f x dx− =∫  or 0.065 

 

 

3 : 
 1 : limits
1 : integrand
1 : answer

⎧
⎪
⎨
⎪⎩

 

 
 
 
 
 

(b) ( ) ( )( )
1

0.410
a

f x g x dx− =∫  

 

 

3 : 
 1 : limits
1 : integrand
1 : answer

⎧
⎪
⎨
⎪⎩

 

 
 
 
 
 

(c) ( )( ) ( )( )( )1 2 21 1 4.558
a

f x g x dxπ + − + =∫  or 4.559 

 

 

3 : { 2 : integrand
1 : limits, constant, and answer
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Question 2 

 

The curve above is drawn in the xy-plane and is described by the equation in 
polar coordinates ( )sin 2r θ θ= +  for 0 ,θ π≤ ≤  where r is measured in 
meters and θ  is measured in radians. The derivative of r with respect to θ  is 

given by ( )1 2cos 2 .dr
d θθ = +  

(a) Find the area bounded by the curve and the x-axis. 
(b) Find the angle θ  that corresponds to the point on the curve with  

x-coordinate 2.−  

(c) For 2 ,3 3
π πθ< <  dr

dθ  is negative. What does this fact say about r ? What does this fact say about the curve? 

(d) Find the value of θ  in the interval 0 2
πθ≤ ≤  that corresponds to the point on the curve in the first quadrant 

with greatest distance from the origin. Justify your answer. 
 

(a) Area 

( )( )

2
0

2
0

1
2
1 sin 2 4.3822

r d

d

π

π

θ

θ θ θ

=

= + =

∫

∫

 

 
 

 

3 : 
1 : limits and constant

 1 : integrand
 1 : answer

⎧
⎪
⎨
⎪⎩

 

(b) ( ) ( )( ) ( )2 cos sin 2 cosr θ θ θ θ− = = +  
2.786θ =  

 
 

2 : { 1 : equation
1 : answer

 

 

(c) Since 0dr
dθ <  for 2 ,3 3

π πθ< <  r is decreasing on this 

interval. This means the curve is getting closer to the origin. 
 
 

 

2 : { 1 : information about 
1 : information about the curve

r
 

 

(d) The only value in 0, 2
π⎡ ⎤

⎢ ⎥⎣ ⎦
 where 0dr

dθ =  is .3
πθ =  

 
θ  r 
0 0 

3
π  1.913 

2
π  1.571 

 

The greatest distance occurs when .3
πθ =  

2 :  1 :  or 1.0473
1 : answer with justification

πθ⎧ =⎪
⎨
⎪⎩
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Question 3 

 
Distance 
x (cm) 0 1 5 6 8 

Temperature 
( )T x  ( )C°  100 93 70 62 55 

 

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature 
( ) ,T x  in degrees Celsius ( )C ,°  of the wire x cm from the heated end. The function T is decreasing and twice 

differentiable. 
(a) Estimate ( )7 .T ′  Show the work that leads to your answer. Indicate units of measure. 

(b) Write an integral expression in terms of ( )T x  for the average temperature of the wire. Estimate the average temperature 
of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of 
measure. 

(c) Find ( )
8

0
,T x dx′∫  and indicate units of measure. Explain the meaning of ( )

8

0
T x dx′∫  in terms of the temperature of the 

wire. 
(d) Are the data in the table consistent with the assertion that ( ) 0T x′′ >  for every x in the interval 0 8 ?x< <  Explain 

your answer. 
 

(a) ( ) ( )8 6 55 62 7 C cm8 6 2 2
T T− −= = − °−  

 

1 : answer 

(b) ( )
8

0
1
8 T x dx∫  

Trapezoidal approximation for ( )
8

0
:T x dx∫  

100 93 93 70 70 62 62 551 4 1 22 2 2 2A + + + += ⋅ + ⋅ + ⋅ + ⋅  

Average temperature 1 75.6875 C8 A≈ = °  

3 : 
( )

8

0
1 1 : 8

1 : trapezoidal sum
 1 : answer

T x dx⎧
⎪⎪
⎨
⎪
⎪⎩

∫
 

(c) ( ) ( ) ( )
8

0
8 0 55 100 45 CT x dx T T′ = − = − = − °∫  

The temperature drops 45 C°  from the heated end of the wire to the 
other end of the wire. 

 

2 : { 1 : value
1 : meaning

 

(d) Average rate of change of temperature on [ ]1, 5  is 70 93 5.75.5 1
− = −
−

 

 Average rate of change of temperature on [ ]5, 6  is 62 70 8.6 5
− = −−  

 No. By the MVT, ( )1 5.75T c = −′  for some 1c  in the interval ( )1, 5  
and ( )2 8T c = −′  for some 2c  in the interval ( )5, 6 .  It follows that 
T ′  must decrease somewhere in the interval ( )1 2, .c c  Therefore T ′′  
is not positive for every x in [ ]0, 8 .  

 

2 : { 1 : two slopes of secant lines
1 : answer with explanation

 

Units of C cm°  in (a), and C°  in (b) and (c) 1 : units in (a), (b), and (c) 
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Question 4 

 

Consider the differential equation 2 .dy x ydx = −  

(a) On the axes provided, sketch a slope field for the given differential equation at the 
twelve points indicated, and sketch the solution curve that passes through the point 
( )0, 1 .  (Note:  Use the axes provided in the pink test booklet.) 

(b) The solution curve that passes through the point ( )0, 1  has a local minimum at ( )3ln .2x =  What is the  

y-coordinate of this local minimum? 
(c) Let ( )y f x=  be the particular solution to the given differential equation with the initial condition 

( )0 1.f =  Use Euler’s method, starting at 0x =  with two steps of equal size, to approximate ( )0.4 .f −  
Show the work that leads to your answer. 

(d) Find 
2

2
d y
dx

 in terms of x and y. Determine whether the approximation found in part (c) is less than or 

greater than ( )0.4 .f −  Explain your reasoning. 
 

(a)  
 3 : 

( )

 1 : zero slopes
 1 : nonzero slopes
1 : curve through 0, 1

⎧
⎪
⎨
⎪⎩

 

(b) 0dy
dx =  when 2x y=  

 The y-coordinate is ( )32ln .2  

2 : 1 : sets 0

 1 : answer

dy
dx

⎧ =⎪
⎨
⎪⎩

 

(c) ( ) ( ) ( ) ( )
( ) ( )

0.2 0 0 0.2
1 1 0.2 1.2

f f f− ≈ + −′
= + − − =

 

( ) ( ) ( )( )
( )( )

0.4 0.2 0.2 0.2
1.2 1.6 0.2 1.52

f f f ′− ≈ − + − −
≈ + − − =

  

2 : ( )
1 : Euler's method with two steps 
1 : Euler approximation to  0.4f

⎧
⎨ −⎩

 

(d) 
2

2 2 2 2d y dy x ydxdx
= − = − +   

2

2
d y
dx

 is positive in quadrant II because 0x <  and 0.y >   

( )1.52 0.4f< −  since all solution curves in quadrant II are  
 concave up.  

2 : 

2

2 1 : 

1 : answer with reason

d y
dx

⎧
⎪
⎨
⎪⎩
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Question 5 

 
A car is traveling on a straight road. For 0 24t≤ ≤  seconds, the car’s 
velocity ( ) ,v t  in meters per second, is modeled by the piecewise-linear 
function defined by the graph above. 

(a) Find ( )
24

0
.v t dt∫  Using correct units, explain the meaning of ( )

24

0
.v t dt∫  

(b) For each of ( )4v′  and ( )20 ,v′  find the value or explain why it does not 
exist. Indicate units of measure. 

(c) Let ( )a t  be the car’s acceleration at time t, in meters per second per second. For 0 24,t< <  write a 
piecewise-defined function for ( ).a t  

(d) Find the average rate of change of v over the interval 8 20.t≤ ≤  Does the Mean Value Theorem guarantee 
a value of c, for 8 20,c< <  such that ( )v c′  is equal to this average rate of change? Why or why not? 

 

(a) ( ) ( )( ) ( )( ) ( )( )
24

0
1 14 20 12 20 8 20 3602 2v t dt = + + =∫  

The car travels 360 meters in these 24 seconds. 
 
 
 

 

2 : { 1 : value
1 : meaning with units

 

 

(b) ( )4v′  does not exist because 
( ) ( ) ( ) ( )

4 4

4 4lim 5 0 lim .4 4t t

v t v v t v
t t− +→ →

− −⎛ ⎞ ⎛ ⎞= ≠ =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

( ) 220 0 520  m sec16 24 2v −′ = = −
−

 

 
 
 

3 : 
( )
( )

1 : 4  does not exist, with explanation
 1 : 20
 1 : units

v
v
′⎧

⎪ ′⎨
⎪⎩

 

 

(c) 

( )

   5    if  0 4
   0    if  4 16

5    if  16 242

t
ta t
t

< <⎧
⎪ < <= ⎨
⎪− < <⎩

 

( )a t  does not exist at 4t =  and 16.t =  
 
 
 

2 : 
5 1 : finds the values 5, 0, 2

 1 : identifies constants with correct intervals

⎧ −⎪
⎨
⎪⎩

 

(d) The average rate of change of v on [ ]8, 20  is 
( ) ( ) 220 8 5  m sec .20 8 6

v v−
= −

−
 

 No, the Mean Value Theorem does not apply to v on 
[ ]8, 20  because v is not differentiable at 16.t =  

2 : [ ]1 : average rate of change of  on 8, 20
 1 : answer with explanation

v⎧
⎨
⎩
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Question 6 

 
Let f be a function with derivatives of all orders and for which ( )2 7.f =  When n is odd, the nth derivative  

of f at 2x =  is 0. When n is even and 2,n ≥  the nth derivative of f at 2x =  is given by ( ) ( ) ( )1 !2 .
3

n
n

nf −=  

(a) Write the sixth-degree Taylor polynomial for f about 2.x =  

(b) In the Taylor series for f about 2,x =  what is the coefficient of ( )22 nx −  for 1 ?n ≥  

(c) Find the interval of convergence of the Taylor series for f about 2.x =  Show the work that leads to your 
answer. 

 

(a) ( ) ( ) ( ) ( )2 4 6
6 2 4 6

1! 1 3! 1 5! 17 2 2 22! 4! 6!3 3 3
P x x x x= + ⋅ − + ⋅ − + ⋅ −  

 

 

3 : 
( )6

 1 : polynomial about 2
 2 : 
      1  each incorrect term
      1  max for all extra terms, 
             ,  misuse of equality      

x
P x

=⎧
⎪
⎪

−⎨
⎪ −
⎪

+⎩

 

(b) ( )
( ) ( )2 2

2 1 ! 1 1
2 !3 3 2n n

n
n n

−
⋅ =  

 

1 : coefficient 

(c) The Taylor series for f about 2x =  is 

( ) ( )2
2

1

17 2 .
2 3

n
n

n
f x x

n=

∞
= + −

⋅∑  

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

2 1
2 1

2
2

22
2

2 2

1 1 22 1 3lim 1 1 22 3
22 3lim 2 92 1 3 3

n
n

n n
n

n

nn

xnL
xn

xn xn

+
+

→

→

∞

∞

⋅ −
+

=
⋅ −

−
= ⋅ − =

+

 

1L <  when 2 3.x − <  
Thus, the series converges when 1 5.x− < <  

When 5,x =  the series is 
2

2
1 1

3 1 17 7 ,22 3

n

n
n n nn= =

∞ ∞
+ = +

⋅∑ ∑  

which diverges, because 
1

1 ,
n n=

∞
∑  the harmonic series, diverges. 

When 1,x = −  the series is 
2

2
1 1

( 3) 1 17 7 ,22 3

n

n
n n nn= =

∞ ∞−+ = +
⋅∑ ∑  

which diverges, because 
1

1 ,
n n=

∞
∑  the harmonic series, diverges. 

The interval of convergence is ( )1, 5 .−  

5 : 

 1 : sets up ratio
1:  computes limit of ratio

 1:  identifies interior of
     interval of convergence
1 : considers both endpoints
1 : analysis/conclusion for

      both endpoints

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

 

 

 
 


